Data assimilation experiments inform monitoring needs for near-term ecological forecasts in a eutrophic reservoir

Forecasting Lake And Reservoir Ecosystems (FLARE) workflow showing the step-by-step process for generating daily water temperature forecasts, starting with data collection from thermistors deployed in the reservoir (step 1), then data access for running the forecast model (step 2), then generation of forecasts with data assimilation (step 3), and ending with forecast skill assessment (step 4).

Abstract

Ecosystems around the globe are experiencing increased variability due to land use and climate change. In response, ecologists are increasingly using near-term, iterative ecological forecasts to predict how ecosystems will change in the future. To date, many near-term, iterative forecasting systems have been developed using high temporal frequency (minute to hourly resolution) data streams for assimilation. However, this approach may be cost-prohibitive or impossible for forecasting ecological variables that lack high-frequency sensors or have high data latency (i.e., a delay before data are available for modeling after collection). To explore the effects of data assimilation frequency on forecast skill, we developed water temperature forecasts for a eutrophic drinking water reservoir and conducted data assimilation experiments by selectively withholding observations to examine the effect of data availability on forecast accuracy. We used in-situ sensors, manually collected data, and a calibrated water quality ecosystem model driven by forecasted weather data to generate future water temperature forecasts using FLARE (Forecasting Lake And Reservoir Ecosystems), an open-source water quality forecasting system. We tested the effect of daily, weekly, fortnightly, and monthly data assimilation on the skill of 1 to 35-day-ahead water temperature forecasts. We found that forecast skill varied depending on the season, forecast horizon, depth, and data assimilation frequency, but overall forecast performance was high, with a mean 1-day-ahead forecast root mean square error (RMSE) of 0.94°C, mean 7-day RMSE of 1.33°C, and mean 35-day RMSE of 2.15°C. Aggregated across the year, daily data assimilation yielded the most skillful forecasts at 1-7-day-ahead horizons, weekly data assimilation resulted in the most skillful forecasts at 8-35-day-ahead horizons. Within a year, daily to fortnightly data assimilation substantially outperformed monthly data assimilation in the stratified summer period, whereas all data assimilation frequencies resulted in skillful forecasts across depths in the mixed spring/autumn periods for shorter forecast horizons. Our results suggest that lower-frequency data (i.e., weekly) may be adequate for developing accurate forecasts in some applications, further enabling the development of forecasts broadly across ecosystems and ecological variables without high-frequency sensor data.

Publication
Earth and Space Science Open Archive
Tadhg N. Moore
Tadhg N. Moore
Senior Lake Scientist

My research interests include environmental data analysis, lake modelling and water education.